Semua Mimpi Kita, Dapat Menjadi Kenyataan, Bila Kita Mempunyai Himpunan Keberanian Untuk Mengejarnya" Himpunan adalah kumpulan benda-benda atau objek yang mempunyai ciri yang sama. Nama himpunan ditulis dengan nama huruf kapital dan anggotanya ditulis di antara kurung kurawal ({ }).
β kali ini akan membahas tentang rumus himpunan yang meliputi pengertian himpunan dan juga rumus himpunan beserta penjelasan dari jenis himpunan, irisan himpunan, cara menyatakan himpunan dan himpunan penyelesaian SPLDV. Untuk lebih jelasnya simak pembahasan dibawah ini Pengertian Himpunan Himpunan adalah kumpulan benda atau objek yang bisa didefinisikan dengan jelas, hingga dengan tepat bisa diketahui objek yang termasuk himpunan dan yang tidak termasuk dalam himpunan tersebut. Suatu himpunan dilambangkan dengan huruf kapital A, B, C, D, E, β¦β¦β¦β¦β¦.. Z, benda ataupun objek yang termasuk kedalam himpunan disebut anggota himpunan atau elemen himpunan ditulis dengan sepasang kurung kurawal {β¦β¦..} 1. Himpunan Semesta Himpunan semesta atau semesta pembicaraan yaitu himpunan yang memuat semua anggota ataupun objek himpunan yang dibicarakan. Himpunan semesta semesta pembicaraan umumnya dilambangkan dengan S atau U. Contoh Kalau kita membahas mengenai 1, Β½, -2, -Β½,β¦ maka semesta pembicaraan kita yaitu bilangan real. Jadi himpunan semesta yang dimaksud adalah R. Apakah hanya R saja? Jawabannya tidak. Tergantung kita mau membatasi pembicaraanya. Pada contoh di atas bisa saja dikatakan semestanya adalah C himpunan bilangan kompleks. Namun kita tidak boleh mengambil Z himpunan bilangan bulat sebagai semesta pembicaraan. 2. Himpunan Kosong Himpunan kosong yaitu himpunan yang tidak mempunyai anggota, dan dinotasikan dengan {} atau β
. Himpunan nol adalah himpunan yang hanya mempunyai l anggota, yaitu nol 0. 3. Himpunan Bagian Himpunan A merupakan himpunan bagian B, jika setiap anggota A juga menjadi anggota B dan dinotasikan A β B atau B β A. Jika ada himpunan A dan B di mana setiap anggota A merupakan anggota B, maka dikatakan A merupakan himpunan bagian subset dari B atau dikatakan B memuat A dan dilambangkan dengan A β B. Jadi, A β B jika dan hanya jika ? β A β ? β B Jika ada anggota dari A yang bukan merupakan anggota B, maka A bukan bukan himpunan bagian dari B, dilambangkan dengan A β B. Rumus himpunan Cara Menyatakan Himpunan Himpunan dapat dinyatakan melalui tiga cara Dengan kata-kata yaitu dengan menyebutkan semua syarat ataupun sifat-sifat keanggotaan dari suatu himpunan. Contoh A adalah himpunan bilangan asli antara 5 dan 12, ditulis A = {bilangan asli antara 5 dan 12} Dengan Notasi Pembentuk Himpunan yaitu menyebutkan semua syarat atau sifat ke-anggotaan dari suatu himpunan, namun anggota himpunan dinyatakan dalam variabel peubah. Contoh A adalah himpunan bilangan asli antara 5 dan 12, dituliskan {x 5UntukA = {1,2,3,4} dan f(x) = 2x - 1, maka : f(1) = 2.1 - 1 = 1. f(2) = 2.2 - 1 = 3. f(3) = 2.3 - 1 = 5. f(4) = 2.4 - 1 = 7. Maka Range = {1,3,5,7} Contoh 2. Diketahui suatu fungsi f(x) = (x + a) + 3 dan untuk f(2) = 7. Tentukan bentuk rumus fungsi f(x) dan nilai f(-3)! Penyelesaian : Untuk menjawab persoalan di atas, kita harus
1 Untuk membuat kue tersedia terigu sebanyak 1.750 gr dan 1.200 gr mentega. Untuk membuat kue A diperlukan 5 gr terigu dan 3 gr mentega, sedangkan untuk kue B diperlukan 5 gr mentega dan 4 gr terigu. Direncanakan akan dibuat x buah kue A dan y buah kue B. Tentukan model matematika dari persoalan tersebut. 2.
a,c) Π R. Contohnya untuk a=4, b = 1, c = 2. Relasi (4,1) anggota himpunan R dan relasi (1,2) anggota himpunan R, namun (4,2) bukan anggota himpunan R. 3. Misalkan R adalah relasi dalam kosakata bahasa Indonesia(dalam bentuk string, sehingga seluruh karakter